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sion. Studies of arithmetic principle knowledge vary along several
dimensions, including the age of the participants, the context in
which the arithmetic is presented, and most importantly, the type
of knowledge assessment (e.g., application of procedures, evalua-
tion of examples). The vast majority of studies utilize single-fac-
eted knowledge assessments, which can lead to incomplete or
misleading views of learners’ knowledge. Both context and type
of knowledge assessment can influence conclusions about learners’
arithmetic principle knowledge. However, relatively few studies
directly address the possible effects of context or type of knowl-
edge assessment on their results. To move the field forward,
research that utilizes multifaceted knowledge assessments is
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The sum of two natural numbers must be greater than either of the numbers. Adding a number and
then subtracting that same number leaves the original value unchanged. Regularities such as these are
principles that apply in the domain of arithmetic. This review focuses on learners’ acquisition of
arithmetic principles, with an emphasis on two broad questions: what do learners know at various
points in development? And, how does their knowledge change? In addressing these questions, we
consider conceptual and methodological issues that arise in making sense of the literature, with a
focus on generalization across contexts and the types of evidence used to assess knowledge. We also
seek to identify potential gaps in the literature.
What is a principle?

Principles can be defined as fundamental laws or regularities that apply within a problem domain.
For example, one principle that applies in the domain of mixture problems is that the concentration of
the final solution must be in between the concentrations of the two initial solutions. Problem solvers
have been shown to use principles in a variety of problem domains, including counting (e.g., Gelman &
Gallistel, 1978), proportional reasoning (e.g., Dixon & Moore, 1996), and physics (e.g., Chi, Glaser, &
Rees, 1982). A deep, flexible understanding of any domain presumably involves an understanding of
principles.

Mathematical principles are fundamental properties about the functioning of the system of math-
ematics. Such principles represent basic truths about the parts of the system to which they apply. For
example, the associative law for addition holds that, for all real numbers x, y and z, (x + y) + z =
x + (y + z). This is a fundamental truth about real numbers.

Principles are related to concepts, which can be defined as abstract or generic ideas that learners
infer or derive based on specific instances. Principles are inherent aspects of a domain, whereas con-
cepts are mental representations constructed by the learner. Knowledge of mathematical principles
may be inferred from experience in the domain, or it may be explicitly taught. In arithmetic, some
commonly taught principles include associativity for addition and multiplication, commutativity for
addition and multiplication, and the distributive property of multiplication. However, being taught
or formally recognized is not essential to being a principle. Principles are regularities that may be used
by problem solvers regardless of whether or not they are formally recognized.

This review addresses three principles in the domain of arithmetic: commutativity, relation to oper-
ands, and inversion. These three principles describe important properties of mathematical operations,
and all three have been extensively studied. Unless specifically noted, these principles are defined and
investigated as they relate to natural numbers, which are positive whole numbers not including zero.

Commutativity pertains to the syntax of arithmetic operations; the order of the operands is irrele-
vant for operations that are commutative. Addition and multiplication are both order-irrelevant oper-
ations; a + b = b + a and a � b = b � a. Subtraction and division are both order-relevant operations;
a � b – b � a and a � b – b � a.

Relation to operands describes the relation between the operands in a given arithmetic equation and
the result of the operation; thus, it reflects knowledge about the expected outcomes of operations.
Relation to operands is a family of principles, with the exact relation depending on the particular oper-
ation and the types of numbers being considered. When operating on natural numbers, in a simple
addition equation (a + b = c), the sum (c) must be greater than both addends (a and b). In a simple sub-
traction equation (a � b = c), the difference (c) must be less than the minuend (a), however it may have
any relation with the subtrahend (b). In a simple multiplication equation (a � b = c), the product (c)
must be greater than both multiplicands (a and b). In a simple division equation (a � b = c), the quo-
tient (c) must be smaller than the dividend (a); however it may have any relation with the divisor (b).
These statements are all examples of relation to operands principles.

Inversion describes relations between operations. Certain arithmetic operations can be viewed as
opposites of one another. For example, addition and subtraction are inverse operations; subtraction
‘‘undoes” addition and vice versa. The inversion principle holds that inverse operations involving
the same value result in no net change, thus, a + b � b = a, and a � b � b = a. The inversion principle
applies regardless of the order of the operands (e.g., b + a � b = a).
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Knowledge evaluation: how do we know what learners know?

How may investigators infer knowledge based on behavior? Any study that seeks to characterize
learners’ knowledge must utilize some method of assessing that knowledge. Since we have yet to de-
velop a method of reading minds, experimenters must provide participants opportunities to display
behavior that allows their knowledge to be characterized. Each individual study may employ a unique
method of assessing knowledge; however, across studies, there are several general types of knowledge
assessments used. These categories of knowledge assessments were discussed in previous work by Bi-
sanz and LeFevre (1992).

For purposes of this review, we build on Bisanz and LeFevre’s prior work to propose a slightly mod-
ified list of assessment types, which includes some distinctions that Bisanz and LeFevre did not draw.
Our list is as follows.

Application of procedures
The learner uses a procedure that implies knowledge of the principle. Researchers may design a

task specifically to elicit the procedure, or use a task that is commonly used in the domain. For exam-
ple, some procedures for solving simple addition equations can be taken as evidence of commutativity
knowledge. One such procedure is counting-on-larger. A learner who uses this procedure solves
a + b = ? equations by counting up from the larger addend. For example, 3 + 5 would be solved by
counting 5. . .6, 7, 8. Use of the counting-on-larger procedure implies knowledge of commutativity be-
cause the procedure treats the order of the addends as irrelevant. Thus, learners who use this proce-
dure when appropriate are inferred to have knowledge of commutativity, at least as revealed through
application of the procedure.

Evaluation of procedures
The learner recognizes the validity of a procedure that implies knowledge of the principle. For

example, a learner may state that the equation 3 + 7 can be solved by switching it to 7 + 3 and count-
ing up from 7. The learner may also evaluate procedures used by another individual. For example, in
some studies, learners evaluate whether a puppet can legitimately use particular procedures in solving
arithmetic equations (e.g., Canobi, Reeve, & Pattison, 1998).

Justification of procedures
The learner provides a justification for the use of a procedure by him or herself or others. For exam-

ple, a learner may explain that one can solve 3 + 7 by looking at the result of 7 + 3, because the order of
the addends does not matter.

Evaluation of examples
The learner differentiates between examples in the domain that violate a principle and those that

do not. In this type of assessment, learners do not evaluate the procedure per se, but rather they eval-
uate a statement or problem that includes a result or that expresses a relationship. For instance, par-
ticipants may indicate that equations that violate a principle are ‘‘worse” or ‘‘more wrong” than
equations that do not (Dixon, Deets, & Bangert, 2001). Dixon and colleagues showed learners sets of
equations that contained either principle violations (e.g., 5 + 3 = 4, a violation of relation to operands,
which holds that, for natural numbers, the sum must be greater than both addends) or incorrect equa-
tions that were consistent with the principle (e.g., 5 + 3 = 12). Learners who rated sets with violation
equations as worse than sets with only non-violations were inferred to have knowledge of the relation
to operands principle. In this case, learners did not evaluate any of the many possible procedures that
could have been used to solve the arithmetic equations; they simply evaluated the solved equations.

Explicit recognition
The learner provides or recognizes a statement that is consistent with a principle. This type of evi-

dence can be obtained by stating a principle in general terms and asking the learner whether the prin-
ciple applies in certain situations. For example, learners can be shown statements such as ‘‘The result
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is always larger than the first number in the problem” and asked to which operations the statement
applies (Dixon et al., 2001).

Every investigation of learners’ knowledge uses at least one of these types of assessments. The cat-
egories are to some degree fuzzy; there may be more than one way to utilize an assessment type, and
in some instances researchers may employ a blend of more than one assessment type.

As a case in point, there are multiple routes to infer knowledge via procedure application.
Researchers use a variety of tasks that differ in terms of how central knowledge of the principle is
to completing the task. For some tasks, the only reasonable way for learners to ‘‘pass” the task is to
use a procedure that implies knowledge of the principle. Many researchers construct tasks of this sort
for assessing learners’ knowledge. For other tasks, there may be several plausible ways for learners to
complete the task, only one of which implies principle knowledge. Thus principle knowledge may be
‘‘optional” in completing the task. Tasks used by researchers can be conceived as lying on a continuum
that reflects how essential principle knowledge is to completing the task.

Every type of assessment involves some degree of recognition, production or evaluation by the
learner. Thus, each may tap different aspects of learners’ knowledge. In light of these different task
demands, it cannot be assumed that learners will perform similarly on all types of knowledge
assessments.

This general issue has been addressed in domains other than arithmetic, as knowledge assess-
ment is crucial to much behavioral research. For example, research on counting principles has
yielded different conclusions about what learners know at various ages, depending on the types
of knowledge assessments that are used. In the counting literature, this issue is often framed in
terms of competence vs. performance. The requirements of the tasks used in different studies are
not exactly the same (LeCorre, Van de Walle, Brannon, & Carey, 2006). Some learners may know
the counting principles (i.e., have competence), but be unable to produce the performance to show
it, depending on the particular knowledge assessment being used. For example, if the task requires
learners to make long counts, other factors such as memory limitations may influence performance.
Thus, a particular knowledge assessment may lead to a misrepresentation or underestimation of
learners’ knowledge.

Some tasks have been criticized as not showing the learner’s ‘‘true” knowledge because the de-
mands on the learner are too great—the idea being that an ‘‘easier” task would more accurately tap
that knowledge. However, is also possible that an ‘‘easier” task might misrepresent the learner’s
knowledge in a different way. If a learner can only produce principle-consistent behavior on a con-
trived task that has stripped away any need to generalize knowledge of a principle, then how well
does the learner really ‘‘know” that principle? Knowledge that can be employed in only an extremely
limited fashion may be qualitatively different from knowledge that can be more broadly applied.

Moreover, evidence for knowledge can be potentially ambiguous. For example, not all researchers
agree that application of a procedure necessarily implies knowledge of the relevant principle (Baroody
& Ginsburg, 1986). The issue is not that there is one perfect knowledge assessment for any given con-
cept or principle. No knowledge assessment is ‘‘best” or ‘‘ideal”; instead, each provides a slightly dif-
ferent window onto the learner’s knowledge.3

It seems likely that performance on different types of knowledge assessments will vary across
development, because of developmental differences in the abilities required for each task. In addi-
tion, there are several other reasons to expect performance on different types of knowledge assess-
ments to vary with development. First, there is evidence that learners sometimes understand correct
procedures that they do not use (e.g., Siegler & Crowley, 1994), and even when learners know a pro-
cedure, they do not always use it consistently (Miller & Seier, 1994). Thus, learners might succeed on
assessments that rely on recognition of correct procedures, before they succeed on assessments that
require overt use of a correct procedure. Second, learners sometimes use correct procedures before
they understand the principles that underpin those procedures (e.g., Briars & Siegler, 1984). Thus,
learners might succeed on assessments that rely on use of a correct procedure before they succeed
3 It should be noted that unreasonable task demands are a real issue. The task demands need to be thoroughly characterized in
order for an accurate conclusion to be made about learners’ performance on the task.
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on assessments that require justification of that procedure. Finally, both theoretical arguments and
empirical findings suggest that development often involves a progression from more implicit to
more explicit knowledge (Goldin-Meadow, Alibali, & Church, 1993; Karmiloff-Smith, 1986, 1992;
Siegler & Stern, 1998). For any particular knowledge assessment, it may be difficult to ascertain
whether implicit or explicit knowledge is required for success on that assessment. However, broadly
speaking, learners might be expected to succeed on assessments that do not require explicitly artic-
ulated knowledge before they succeed on assessments that require producing explicit justifications.

Context of arithmetic

A second key issue to be considered in addressing knowledge of arithmetic principles is the context
in which the arithmetic is presented. Context has been shown to be important, not only in arithmetic,
but in problem solving more generally. Previous studies have shown that context affects problem solv-
ing in many different domains. Examples include the Wason selection task (Ahn & Graham, 1999;
Wason, 1966), the Tower of Hanoi problem (Evans, 1982; Kotovsky, Hayes, & Simon, 1985), and the
river crossing problem (Jeffries, Polson, Razran, & Atwood, 1977), to name only a few. In each case,
small changes to seemingly superficial details of the problem presentation lead to significantly differ-
ent patterns of performance by learners. For example, some versions of the Tower of Hanoi problem
can take on average 16 times longer to solve than others (Kotovsky et al., 1985).

Studies of arithmetic knowledge typically use one of several contexts: symbolic, verbal, object or
abstract. Though the labels and the exact details of the contexts vary from study to study, the impor-
tant point is that context can vary. The symbolic context generally involves a symbol only presentation
of an arithmetic operation (e.g., 5 + 3). The verbal context (also called story or word problem context)
generally involves a written or oral story scenario, such as ‘‘John has five apples and Jane has three
apples”. The object context (often called the non-verbal context) involves sets of actual objects or visual
presentations of objects that can be combined or otherwise manipulated to correspond with arithme-
tic operations. The abstract context involves conveying arithmetic operations with nonspecific values.
This can be done with either symbols (e.g., x + y), words (e.g., more, less) or objects, where exact
amounts are concealed. Every study presents arithmetic in a particular context, even if the effect of
context is not the focus of the study.

The effects of context on arithmetic problem solving have been well documented. Several studies
have reported variations in performance on arithmetic or algebraic problems across different con-
texts (e.g., Jordan, Huttenlocher, & Levine, 1992; Koedinger & Nathan, 2004; Koedinger, Alibali, &
Nathan, 2008; Levine, Jordan, & Huttenlocher, 1992). For example, Levine et al. (1992) examined
children’s arithmetic performance in object, story and symbolic contexts, and found that 4-year-
old participants performed better in the object context than in either of the other contexts. Koeding-
er and Nathan (2004) investigated high school students’ performance on simple algebraic problems
in symbolic and verbal contexts, and found that students performed more accurately in verbal prob-
lem contexts.

Resnick’s (1992) theory of general arithmetic development postulates that arithmetic thinking
progresses through several stages that correspond to thinking about number in different contexts.
According to Resnick, learners first think in terms of proto-quantities (object context), then quanti-
ties (verbal context), then numbers (symbolic context) and finally operators (abstract context).
Gradually, through experience, learners gain capabilities for thinking about number in these con-
texts. The stages are not all-or-nothing and the transition from stage to stage can be relatively slow.
Other theories of development also postulate that children progress from more concrete to more
symbolic or abstract thinking (e.g., Karmiloff-Smith, 1992; Piaget, 1952; Werner & Kaplan, 1963).

This general idea may apply, not only to proficiency and performance on typical arithmetic tasks,
but also to knowledge of arithmetic principles (see Resnick, 1992). Indeed, given the ample evidence
that context plays a role in problem solving, it seems highly likely that context affects principle
understanding. It seems plausible that learners might display knowledge of principles in object con-
texts before they do so in verbal or symbolic contexts, as Resnick’s theory would predict. However,
most studies of arithmetic principle knowledge do not bear on this issue, because they utilize only
a single context. Older children are typically tested only in a symbolic or verbal context (e.g., Siegler
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& Stern, 1998, inversion in a symbolic context with 8-year-olds), while younger children are often
tested only in an object context (e.g., Klein & Bisanz, 2000, inversion in an object context with 4-
year-olds). Only a handful of studies compare understanding of the same children across multiple con-
texts. Given that different studies use different contexts, and context may affect performance, it is
important to take context into consideration when attempting to draw conclusions about the devel-
opment of arithmetic principle knowledge.

Knowledge profiles

In view of the complexity of evaluating learners’ knowledge, we endorse the use of multifaceted
knowledge assessments, or knowledge profiles, which summarize individuals’ performance across mul-
tiple knowledge assessments. Bisanz and colleagues (Bisanz & LeFevre, 1992; Bisanz, Watchorn, Piatt,
& Sherman, 2009) have argued that multifaceted assessments characterize learners’ knowledge more
accurately than single-faceted assessments. Along similar lines, other researchers have argued that
knowledge is often best characterized as partial or graded rather than binary or all-or-none (e.g.,
McNeil & Alibali, 2005; Munakata, 2001); such knowledge is often displayed on one type of assess-
ment but not another. Despite the advantages of knowledge profiles, however, they are rarely used
in practice. For example, Bisanz and colleagues (2009) discuss the merits of a particular type of knowl-
edge profile in characterizing knowledge of inversion, but such profiles have yet to be used in any
empirical study of inversion. Across principles, most studies utilize single-faceted assessments that
yield a single conclusion regarding whether a learner ‘‘has” or ‘‘does not have” the knowledge in
question.

At face value, more narrow assessments of learners’ knowledge seem less valuable than more com-
prehensive assessments. However, this is not to say that narrow, targeted knowledge assessments
have no value. Rather, the value depends on the goals of the researcher. While a particular type of
knowledge assessment may not fully characterize the state of the learner’s knowledge, the targeted
aspect of the learner’s behavior is still valuable to understand.

This review illustrates the range of knowledge assessments in use in the literature. Participants’
behavior varies as a function of the type of assessment and the context in which the arithmetic is pre-
sented. These variations imply that participants’ knowledge is more complicated than ‘‘have” or ‘‘have
not”, and they underscore the importance of knowledge profiles. We return to this issue in the con-
cluding section.
Examining arithmetic principles

In the following sections, we look in detail at three arithmetic principles that have been inves-
tigated in the literature: commutativity, relation to operands and inversion. This is by no means an
exhaustive list of arithmetic principles; however, these three principles have each received a great
deal of research attention. For each principle, we will review the relevant findings with the issues
of assessment type and context in mind. Of course, these are not the only factors that affect
whether children display knowledge of principles; other factors, such as problem size and problem
format, may also come into play (e.g., Canobi & Bethune, 2008). However, assessment type and
context are factors that cut across much of the literature, and that raise important considerations
for theories about how principle knowledge is acquired, so we have chosen to focus on them here.
Within each section, we address how understanding of the principle is manifested across age
groups.
Commutativity

Commutativity is possibly the most extensively researched principle, most likely because it is often
explicitly taught in formal mathematics classes. The studies considered here are those that seek to
characterize learners’ knowledge of commutativity. Studies of commutativity knowledge have used
several types of knowledge assessments. Most common is application of procedures, though several
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studies have also utilized justification of procedures. Individual studies and their outcomes are sum-
marized in Tables 1(a–d).

Commutativity knowledge based on application of procedures

The most popular type of assessment used in the literature as an indicator of commutativity knowl-
edge is application of procedures that imply knowledge of the principle. Studies of commutativity that
use applications of procedures fall in one of two categories of relevance to the previously discussed
issue of how essential principle knowledge is to completing the task. Researchers either construct
their own ‘‘new” tasks or use more domain-typical tasks. For domain-typical tasks, there are usually
several plausible procedures that learners can use to complete the task, only one of which implies
principle knowledge. For such tasks, there may be relatively little motivation for learners to use a pro-
cedure that suggests principle knowledge, as opposed to other procedures they may be familiar and
successful with. For constructed tasks, learners generally have fewer options for procedures to use.
The target procedure may be the only reasonable way for the learner to ‘‘pass” the task.

Constructed tasks
Many investigations of commutativity knowledge have used tasks specifically designed to elicit

procedures consistent with commutativity. In one such task, participants were given a series of
a + b equations to solve by any method they wished (Baroody, Ginsburg, & Waxman, 1983). Partici-
pants’ answers to previous equations were always displayed, giving them the opportunity to reference
a previously solved equation to solve the current equation. This procedure, termed ‘‘looking back”, is
consistent with commutativity if the current equation (a + b) is the commuted pair of the previous
equation (b + a). Participants who used this procedure when appropriate were inferred to have knowl-
edge of commutativity. As a second example of a constructed task, Canobi (2002) showed participants
colored boxes of candy, where the color corresponded to a certain amount of candy. Participants then
viewed boxes being passed out to two puppets, and were asked if the puppets had the same number of
candies: ‘‘Bill gets a box of reds, then he gets four greens. Kate gets four greens, then she gets a box of
reds. Do Bill and Kate have the same number of Smarties?” Participants who responded that both pup-
pets had the same number were inferred to have knowledge of commutativity.

Several versions of constructed tasks that employ this general framework have been used. In each
version it is advantageous, if not required, for the participant to note that two expressions are equiv-
Table 1a
Studies of commutativity using application of procedures on constructed tasks as knowledge evidence.

Study Age group (yrs) Context Operation DV Outcome (success)

Sophian et al. (1995) 3–4 Object Addition % of participants 57
Sophian et al. (1995) 5 Object Addition % of participants 64
Canobi et al. (2002) 4–5 Object Addition % of trials 70
Cowan and Renton (1996) 5 Object Addition % of participants 54
Cowan and Renton (1996) 5 Abstract Addition % of participants 54
Baroody and Gannon (1984) 5–6 Symbolic Addition % of participants 51
Canobi et al. (2002) 5–6 Object Addition % of trials 85
Canobi et al. (2002) 5–6 Object Addition % of trials 79
Wilkins et al. (2001) 6 Verbal Addition % of participants 77
Baroody et al. (1983) 6 Symbolic Addition % of trials 72
Cowan and Renton (1996) 6–9 Object Addition % of participants 92
Cowan and Renton (1996) 6–9 Symbolic Addition % of participants 96
Cowan and Renton (1996) 6–9 Abstract Addition % of participants 77
Baroody et al. (1983) 7 Symbolic Addition % of trials 83
Baroody et al. (1983) 8 Symbolic Addition % of trials 83
Canobi (2009) 8 Symbolic Addition % of trials 75a

Canobi (2005) 7–9 Symbolic Addition % of trials 94
Canobi (2005) 7–9 Object Addition % of trials 97

a Averaged across conditions at pretest.



Table 1b
Studies of commutativity using application of procedures on domain tasks as knowledge evidence.

Study Age group (yrs) Context Operation DV Outcome (success)

Groen and Resnick (1977) 4–5 Symbolic Addition % of participants 50
Cowan and Renton (1996) 5 Symbolic Addition % of participants 46
Baroody and Gannon (1984) 5–6 Symbolic Addition % of participants 31
Canobi et al. (2003) 5–8 Symbolic Addition % of participants 76
Canobi et al. (2003) 5–8 Symbolic Addition % of trials 25
Carpenter and Moser (1984) 6 Symbolic Addition % of participants 10
Canobi et al. (2002) 6 Symbolic Addition % of participants 33
Canobi et al. (2002) 6 Symbolic Addition % of trials 5
Canobi et al. (1998) 6–8 Symbolic Addition % of participants 96
Canobi et al. (1998) 6–8 Symbolic Addition % of trials 53
Cowan and Renton (1996) 6–9 Symbolic Addition % of participants 83
Carpenter and Moser (1984) 7 Symbolic Addition % of participants 70
Carpenter and Moser (1984) 8 Symbolic Addition % of participants 55
Squire et al. (2004) 9 Verbal Multiplication % of participants 52
Squire et al. (2004) 10 Verbal Multiplication % of participants 92
Campbell (1999) Adults Symbolic Multiplication Reaction Time Yes
Rickard and Bourne (1996) Adults Symbolic Multiplication Reaction Time Yes
Rickard and Bourne (1996) Adults Verbal Multiplication Reaction Time No

Table 1c
Studies of commutativity using evaluation of procedures as knowledge evidence.

Study Age group (yrs) Context Operation DV Outcome (success)

Canobi et al. (2003) 5–8 Object Addition % of trials 70
Canobi et al. (2003) 5–8 Symbolic Addition % of trials 72
Canobi et al. (2003) 5–8 Abstract Addition % of trials 70
Canobi et al. (1998) 6–8 Symbolic Addition % of trials 87

Table 1d
Studies of commutativity using justification of procedures as knowledge evidence.

Study Age group (yrs) Context Operation DV Outcome (success)

Canobi et al. (2002) 5 Object Addition % of trials >83% of correct trialsa

Baroody and Gannon (1984) 5–6 Symbolic Addition % of participants 51
Canobi et al. (2003) 5–8 Object Addition % of participants 35
Canobi et al. (2003) 5–8 Symbolic Addition % of participants 37
Canobi et al. (2003) 5–8 Abstract Addition % of participants 36
Canobi et al. (2002) 6 Object Addition % of trials >89% of correct trialsa

Canobi et al. (2002) 6 Object Addition % of trials >87% of correct trialsa

Langford (1981) 6 Object Addition % of participants 3
Langford (1981) 6 Object Multiplication % of participants 6
Canobi et al. (1998) 6–8 Symbolic Addition % of trials 67
Canobi (2009) 8 Symbolic Addition % of trials 59b

Canobi (2005) 7–9 Symbolic Addition % of trials 90
Canobi (2005) 7–9 Object Addition % of trials 76

Each row corresponds to one reported result within a study. DV is the dependent variable as reported by the author.
a Canobi et al. (2002) report justification data for trials with correct judgments only, and the justification categories are not

mutually exclusive, making it impossible to ascertain the exact percentage of children who provided correct justifications.
b Averaged across conditions at pretest.
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alent. This type of paradigm has been employed in an object context (Canobi et al., 2002; Sophian,
Harley, & Martin, 1995), a verbal context (Wilkins, Baroody, & Tiilikainen, 2001), a symbolic context
(Canobi, 2009), and in multiple contexts (Cowan & Renton, 1996).
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Domain-typical tasks
A different method involves examining use of principle-consistent procedures in typical domain

tasks that are not expressly designed to elicit such procedures. The range of procedures used by chil-
dren in solving simple arithmetic problems has been well cataloged (Baroody, 1987; Carpenter & Mo-
ser, 1984; Siegler, 1987; Siegler & Jenkins, 1989). Two such procedures used in addition are counting-
on-larger (COL) and counting-all-larger (CAL). A learner using the COL procedure would solve both
3 + 5 and 5 + 3 by starting from five, and counting up three (5. . .6, 7, 8). A learner using CAL would
do the same, but would start at one and count up to five, rather than start from five. Both of these pro-
cedures imply knowledge of commutativity because they treat the order of the addends as irrelevant.
Thus, use of COL or CAL can be interpreted as evidence of commutativity knowledge, on the assump-
tion that learners would use one of these procedures only if they thought that the order of the addends
did not influence the sum.

Many studies measure use of COL or CAL (Baroody & Gannon, 1984; Canobi, Reeve, & Pattison,
2003; Canobi et al., 1998, 2002; Carpenter & Moser, 1984; Cowan & Renton, 1996; Groen & Resnick,
1977), which we interpret as possible evidence of commutativity knowledge, and therefore relevant
to this review. However, not all researchers who report use of COL or CAL accept it as evidence of com-
mutativity knowledge (see Baroody, Wilkins, & Tiilikainen, 2003, for discussion). For example, children
might count on from the larger addend because they have learned that procedure in school, not be-
cause they understand the principle. Further, children who use COL or CAL may not realize that start-
ing with the larger number must yield the same solution as starting with the smaller number; they
may believe that starting with the larger number yields a possible solution, but not necessarily the
same solution. Thus, use of COL or CAL may not always indicate understanding of commutativity.
Use of COL or CAL is generally determined by self-report, though it is also possible to analyze partic-
ipants’ reaction times.

In some studies, differences in performance when commutativity is relevant vs. not relevant are
interpreted as evidence for knowledge of the principle. For example, learners who are given 63 � 7
to solve will respond relatively quickly if they solved the same equation very recently, because the
earlier equation primes the later equation (Fendrich, Healy, & Bourne, 1993; Rickard & Bourne,
1996). Campbell (1999) investigated whether multiplication equations are primed by their commuted
pair—for example, is 6 � 9 primed by 9 � 6?

A similar approach was used by Squire, Davies, and Bryant (2004). In this case, participants were given
multiplication word problems, and for some of the problems, knowledge of commutativity was useful in
determining the correct answer. For example, ‘‘Christopher has 33 bags of coins, each with 18 coins in them.
Altogether he has 594 coins. James has 18 bags, each with 33 coins in them. How many coins does James have?”
Participants who performed better on commutativity-relevant word problems than on problems on
which commutativity was not relevant were inferred to have knowledge of the principle.

Commutativity knowledge based on the evaluation of procedures

Principle knowledge can also be assessed by learners’ evaluation of procedures. Rather than mea-
suring use of a procedure, learners are presented with a procedure and are asked to evaluate whether
the procedure is ‘‘right” (Canobi et al., 1998, 2003). For example, a learner may be told that a puppet
solved 3 + 5 by looking at the result of 5 + 3. A learner who indicates that this is a valid procedure
might be thought to understand the principle that this procedure is based on, commutativity.

Commutativity knowledge based on justification of procedures

Principle knowledge can also be assessed via learners’ justification of procedures. This type of evi-
dence involves participants reasoning about procedures used by themselves or by others. As noted
previously, some studies utilize constructed tasks in which it is possible to solve a simple equation
(a + b) by referencing a previously solved equation (b + a). Participants may be asked to provide a
justification for this procedure, either when they produce it themselves (Baroody & Gannon, 1984;
Canobi et al., 2002, 2003; Langford, 1981) or when it is shown to them via a puppet display (Canobi,
2005, 2009; Canobi et al., 1998, 2003).
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Comparing assessment types

There are many routes to evaluating knowledge of commutativity. Application of procedures is the
most common type of assessment used in the literature. Studies utilizing application of procedures are
split between constructed tasks (e.g., solving a + b problems in a setting in which answers to previ-
ously solved problems, including commuted pairs, are displayed) and more typical domain tasks
(e.g., solving addition problems under ordinary circumstances). Fortunately, there have been a few
within-study contrasts between these task types (Baroody & Gannon, 1984; Canobi et al., 1998,
2002, 2003). These studies should be highlighted because the use of multiple assessment types within
a single study is potentially more informative than cross-study comparisons. Several studies have re-
ported higher estimates of knowledge for constructed tasks than for domain-typical tasks (Baroody &
Gannon, 1984; Canobi et al., 2002, 2003; see Table 1). The opposite is the case for one study (Canobi
et al., 1998). Thus, learners generally show more knowledge on constructed tasks.

Whether or not learners apply a particular procedure depends to some degree on what options they
have. In domain-typical tasks there are often many procedures that learners may use; the relevant
procedure is not the only possible procedure. In contrast, in constructed tasks, a procedure based
on commutativity knowledge may be by far the easiest way for the learner to navigate the task. Con-
structed tasks are generally designed so that the principle-consistent procedure is either required or
advantageous, while in domain-typical tasks the principle-consistent procedure may not be any better
or easier than other procedures the learner may know. Thus, there may be more motivation to use a
commutativity-consistent procedure on a constructed task. This is not to say that constructed tasks
are better knowledge assessments than domain typical tasks. However, differences in the demands
of the tasks need to be kept in mind when comparing results.

The use of COL and CAL procedures in simple arithmetic is an important procedural advancement
by young learners. Inferring commutativity knowledge based on use of COL or CAL in simple arithme-
tic may lead to lower knowledge estimates than inferring it based on performance on constructed
tasks; however, this does not imply that domain-typical tasks are a less useful knowledge assessment
than constructed tasks. It is just as important to characterize how knowledge is used than simply to
claim its presence or absence.

Several studies have reported that participants justify and evaluate commutativity-consistent pro-
cedures as well as they apply them (Canobi, 2005; Canobi et al., 2002, 2003). These studies looked pri-
marily at learners’ justifications of their own procedure use (see Table 1c). Participants’ justifications
of others’ procedures (Canobi et al., 1998, 2003) seem to be more elaborate than justifications of their
own procedures (Baroody & Gannon, 1984; Canobi et al., 2002).

Commutativity knowledge across contexts

The vast majority of commutativity studies are conducted in the symbolic context only. A few stud-
ies use other contexts, such as verbal or object; however differences in ages of participants and other
methodological particulars make it difficult to draw any firm conclusions about the effects of context.
The best evidence regarding effects of context comes from within-study comparisons, of which there
are three: Canobi et al. (2003), Canobi (2005), and Cowan and Renton (1996).

Canobi and colleagues (2003) investigated 5–8 year olds’ knowledge of commutativity using eval-
uation of procedures and justification of procedures. This study compared participants’ knowledge in
object, symbolic and abstract contexts. For both assessment types, participants’ performance did not
vary across contexts. For evaluation of procedures, participants’ behavior revealed principle knowl-
edge on 70% of trials in the object context, 73% in the symbolic context, and 70% in the abstract con-
text. For justification of procedures, participants displayed behavior consistent with the principle on
35% of trials in the object context, 37% in the symbolic context and 36% in the abstract context.

Similar results were found by Canobi (2005) with 7–9 year olds. This study compared participants’
knowledge in applying a procedure (i.e., judging whether a puppet could work out a problem by ‘‘look-
ing back” at a previously solved problem) and in justifying that procedure. Participants’ judgments re-
vealed knowledge of commutativity on 94% of trials in a symbolic context, and 97% of trials in an
object context. Participants’ justifications revealed slightly better performance in the object context,
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with 89.5% of justifications invoking commutativity in the object context, compared to 76% in the
symbolic context.

Cowan and Renton (1996) compared 6–9 year olds’ knowledge of commutativity using application
of procedures in a constructed task. Most participants displayed knowledge of commutativity in an
object context (91%) and in a symbolic context (95%); significantly fewer participants displayed
knowledge of the principle in an abstract context (77%).

Recall that Resnick’s (1992) theory implies that understanding should emerge first in an object con-
text, then in a verbal context, then in a symbolic context, and finally in an abstract context. The findings
just reviewed provide partial support for this view, in that children displayed less knowledge in a sym-
bolic context than in an object context (Canobi, 2005), and less knowledge in an abstract context than in
an object or symbolic context (Cowan & Renton, 1996). Moreover, across-study comparisons at a given
age are broadly compatible with this theory. For example, studies of 6-year-old children reveal slightly
better performance in an object context (85% and 79% of trials in two experiments; Canobi et al., 2002)
than in a verbal context (77% of trials; Wilkins et al., 2001) or a symbolic context (72% of trials, Baroody
et al., 1983). However, more rigorous within-study tests of these developmental orderings are still
needed, as no study to date has clearly demonstrated the full developmental trajectory.
When does knowledge of commutativity emerge?

There is no specific answer to the question of when learners ‘‘have” knowledge of commutativity.
Generally, older participants show more knowledge than younger participants, and participants who
are further along in formal schooling show more knowledge than participants who are less far along.
There are a few positive results for commutativity for addition with learners as young as four and five
(Canobi et al., 2002; Sophian et al., 1995), though there are some negative results with this age group
as well (Canobi et al., 2002; Cowan & Renton, 1996; Groen & Resnick, 1977). It seems that not until at
least age 6 do most learners consistently show knowledge of commutativity for addition in any of the
assessment types or contexts (Baroody et al., 1983; Canobi et al., 2002; Wilkins et al., 2001). At age 6,
most learners display knowledge in constructed tasks; fewer do so in domain-typical tasks (Canobi
et al., 2002; Carpenter & Moser, 1984).

Studies of commutativity for multiplication are rare, but the existing evidence suggests that chil-
dren have knowledge of commutativity for multiplication as young as age 9, as revealed by application
of procedures in a verbal context (Squire et al., 2004).
Directions for future research

The literature on commutativity knowledge has several gaps. Application of principle-consistent
procedures is by far the most commonly used means of assessing knowledge of commutativity. There
are no studies of commutativity using explicit recognition or evaluation of examples as assessments of
knowledge. This greatly limits comparisons of commutativity knowledge across assessment types.
Although it may seem difficult, it would be possible to investigate commutativity using evaluation
of examples. Learners could be asked to evaluate the performance of a hypothetical student on a cer-
tain equation given that the student knows certain other equations. For example, if a student previ-
ously correctly solved 6 + 3, then participants may find it unexpected if the student incorrectly
solves 3 + 6. In this case incorrectly solving 3 + 6 would be evaluated as worse if the student had
previously solved the commuted pair 6 + 3 as opposed to an unrelated equation such as 5 + 2. An
investigation of commutativity using evaluation of examples may reveal knowledge not shown by
other assessment types.

With respect to contexts, the vast majority of studies of commutativity knowledge utilize a sym-
bolic context only (see Table 1), though a few use verbal (Squire et al., 2004; Wilkins et al., 2001)
or object contexts (Canobi et al., 2002). In only three cases are multiple contexts used within the same
study (Canobi, 2005; Canobi et al., 2003; Cowan & Renton, 1996). Furthermore, even these within-
study comparisons do not allow firm conclusions to be drawn about the developmental ordering or
emergence of commutativity knowledge across contexts.
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In summary, the commutativity literature is largely focused on symbolic contexts and application
of procedures. The literature generally ignores the knowledge learners may show in other contexts,
especially young learners in an object context, and the knowledge learners might reveal using differ-
ent types of knowledge assessments.

Relation to operands

Relation to operands principles describe the relative values of the operands and the result in any
simple equation. In the case of adding natural numbers (a + b = c), the sum must be greater than both
of the addends. Similarly, for multiplying natural numbers (a � b = c), the product must be greater
than or equal to both multiplicands. For subtraction (a � b = c), the difference must be less than the
minuend. For division (a � b = c), the quotient must be smaller than or equal to the dividend. Research
relevant to these principles also includes studies of less formal versions of the principles, such as the
ideas that ‘‘addition makes more” and ‘‘subtraction makes less.” Individual studies and their outcomes
are summarized in Tables 2(a–c).

Knowledge of relation to operands based on application of procedures

Several studies have investigated young learners’ knowledge of relation to operands using applica-
tion of procedures to assess knowledge. This is done by giving learners opportunities to indicate the
magnitude of the result relative to the operands. Studies in both object contexts (Brush, 1978; Starkey,
1992) and verbal contexts (Sophian & McCorgray, 1994) have utilized this approach.

In one study, simple arithmetic equations were conveyed in an object context using marbles placed
into containers (Brush, 1978). Participants were shown two containers that had the same number of
marbles. The experimenter then removed or placed marbles into one of the containers to convey sim-
ple subtraction or addition. Participants with knowledge of relation to operands are able to indicate
which container then had more marbles.

In another study, young children’s arithmetic knowledge was tested in an object context using a
reaching task (Starkey, 1992). Children were shown a set number of objects that had been placed into
a container. The experimenter then performed a transformation, either placing objects into the con-
tainer or taking objects out of the container. The participant was then asked to remove the objects
Table 2a
Studies of relationship to operands using application of procedures as knowledge evidence.

Study Age group Context Operation DV Outcome (success)

Starkey (1992) 18 mos Object Addition/subtraction % of trials 76
Starkey (1992) 24 mos Object Addition/subtraction % of trials 82
Starkey (1992) 30 mos Object Addition/subtraction % of trials 96
Starkey (1992) 36 mos Object Addition/subtraction % of trials 96
Starkey (1992) 42 mos Object Addition/subtraction % of trials 92
Starkey (1992) 48 mos Object Addition/subtraction % of trials 97
Sophian and McCorgray (1994) 4 yrs Verbal Addition % of trials 30
Sophian and McCorgray (1994) 4 yrs Verbal Subtraction % of trials 55
Brush (1978), Exp. 2 4 yrs Object Addition % of participants 95
Brush (1978), Exp. 2 4 yrs Object Subtraction % of participants 100
Brush (1978), Exp. 1 4–6 yrs Object Addition % of participants 96
Brush (1978), Exp. 1 4–6 yrs Object Subtraction % of participants 96
Brush (1978), Exp. 2 5 yrs Object Addition % of participants 100
Brush (1978), Exp. 2 5 yrs Object Subtraction % of participants 100
Sophian and McCorgray (1994) 5 yrs Verbal Addition % of trials 45
Sophian and McCorgray (1994) 5 yrs Verbal Subtraction % of trials 65
Brush (1978), Exp. 2 6 yrs Object Addition % of participants 100
Brush (1978), Exp. 2 6 yrs Object Subtraction % of participants 100
Sophian and McCorgray (1994) 6 yrs Verbal Addition % of trials 70
Sophian and McCorgray (1994) 6 yrs Verbal Subtraction % of trials 80



Table 2b
Studies of relationship to operands using evaluation of examples.

Study Age group Context Operation DV Outcome (success)

Wynn (1992) 5 mos Object Addition Looking time Yes
Wynn (1992) 5 mos Object Subtraction Looking time Yes
Simon et al. (1995) 5 mos Object Addition Looking time Yes
Cohen and Marks (2002) 5 mos Object Addition Looking time No
Feigenson et al. (2002) 7 mos Object Addition Looking time Yes
Chiang and Wynn (2000) 8 mos Object Addition Looking time Yes
Uller et al. (1999) 8 mos Object Addition Looking time No
McCrink and Wynn (2004) 9 mos Object Addition Looking time Yes
Prather and Alibali (2007) 7–8;5 yrs Symbolic Addition Ratings No
Prather and Alibali (2007) 7–8;5 yrs Verbal Addition Ratings No
Prather and Alibali (2007) 7–8;5 yrs Symbolic Subtraction Ratings No
Prather and Alibali (2007) 7–8;5 yrs Verbal Subtraction Ratings No
Dixon et al. (2001) 14 yrs Symbolic Addition Rating Yes
Dixon et al. (2001) 14 yrs Symbolic Subtraction Rating No
Dixon et al. (2001) 14 yrs Symbolic Multiplication Rating Yes
Dixon et al. (2001) 14 yrs Symbolic Division Rating No
Prather and Alibali (2007) Adults Verbal Addition Rating Yes
Dixon et al. (2001) Adults Symbolic Addition Rating Yes
Prather and Alibali (2007) Adults Symbolic Addition Rating Yes
Prather and Alibali (2008b) Adults Symbolic Addition Rating Yes
Prather and Alibali (2008a) Adults Symbolic Addition—negative

numbers
Rating No

Prather and Alibali (2007) Adults Verbal Subtraction Rating Yes
Dixon et al. (2001) Adults Symbolic Subtraction Rating Yes
Prather and Alibali (2007) Adults Symbolic Subtraction Rating No
Prather and Alibali (2008b) Adults Symbolic Subtraction Rating No
Prather and Alibali (2008a) Adults Symbolic Subtraction—negative

numbers
Rating No

Dixon et al. (2001) Adults Symbolic Multiplication Rating Yes
Dixon et al. (2001) Adults Symbolic Division Rating No

Table 2c
Studies of relationship to operands using explicit knowledge assessments.

Study Age group Context Operation DV Outcome (success)

Dixon et al. (2001) Adults Symbolic Addition Rating Yes
Dixon et al. (2001) Adults Symbolic Subtraction Rating Yes
Dixon et al. (2001) Adults Symbolic Multiplication Rating Yes
Dixon et al. (2001) Adults Symbolic Division Rating Yes

Each row corresponds to one reported result within a study. DV is the dependent variable as reported by the author. Outcome
success is determined by a significant result involving the dependent variable that implies principle knowledge.
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from the container. Children’s expectations about the number of objects were revealed by the number
of times they reached. A child with knowledge of relation to operands should reach less often if objects
were taken out and more often if objects were placed into the container.

Arithmetic transformations can also be conveyed in verbal contexts. For example, Sophian and
McCorgray (1994) showed participants sets of toys that corresponded to story scenarios such as:

� One morning Mickey’s and Raggedy’s bunnies decided to have a party. At first Raggedy’s five bunnies
were there, then Mickey’s three bunnies came. How many bunnies were at the party after that?

Young learners are often unable to provide exactly correct answers to these types of problems.
However, some arithmetic knowledge may be inferred on the basis of their incorrect solutions.



234 R.W. Prather, M.W. Alibali / Developmental Review 29 (2009) 221–248
Learners who have knowledge of relation to operands should consistently indicate that addition re-
sults in more objects while subtraction results in fewer objects.

Knowledge of relation to operands based on evaluation of examples

Studies that use evaluation of examples often test very young participants, including infants. There
is a great deal of interest in characterizing the numerical knowledge of infants (see Mix, Huttenlocher,
& Levine, 2002, for a review), and some of this research investigates the possibility of simple arithme-
tic knowledge in infants. Perhaps the most well-known of these is Wynn’s (1992) assessment of in-
fants’ arithmetic knowledge. In this paradigm infants viewed one Mickey Mouse doll that was then
covered with an occluder. Another doll appeared and was placed behind the occluder. The occluder
was then dropped to reveal either two dolls (correct) or one doll (magic). Infants’ looking times were
measured to evaluate their expectations about each event. The ‘‘magic” trials represent a violation of
the relation to operands principle for addition, because adding objects to a set should result in more
objects, not fewer or the same amount. This display was repeated in variations that corresponded to
1 + 1 = 2, 1 + 1 = 1, 2 � 1 = 1 and 2 � 1 = 2. This can be seen as a very basic test of relation to operands
for addition and subtraction, using evaluation of examples as evidence.

A myriad of infant studies, most using a similar paradigm, have been conducted to respond to
Wynn’s original claim that 5-month-olds understand simple arithmetic. Many of these subsequent
studies have also provided evidence that infants have knowledge of relation to operands (Chiang &
Wynn, 2000; McCrink & Wynn, 2004; Simon, Hespos, & Rochat, 1995). However, as with many areas
of infant research, there are differing perspectives on what sorts of cognitive abilities underlie infants’
behavior. A major issue is that non-numerical factors make infants’ behavior in these experiments dif-
ficult to interpret (see Mix et al., 2002). For example, Cohen and Marks (2002) report that familiariza-
tion with the display and objects used prior to test affects infants’ behavior, suggesting that their
reactions to the arithmetic display may be due to their familiarity with the objects, and not arithmetic
knowledge. Feigenson, Carey, and Spelke (2002) suggest that infants’ behavior is driven by violations
in object expectations based on overall surface area, not number per se. The effect is also vulnerable to
slight changes in methodology, such as the timing of the presentation of stimuli (Uller, Carey, Hunter-
Fenner, & Klatt, 1999). Thus, the issue of whether arithmetic principle knowledge drives infants’ look-
ing behavior in this paradigm is still unresolved.

It should be noted that although infants’ behavior in this paradigm may be consistent with
relation to operands, the most informative comparisons are not made in most infant studies.
Infants’ reactions to correct equations are compared to incorrect equations, but the crucial
comparison of violation and (incorrect) non-violation equations (e.g., 1 + 1 = 1 vs. 1 + 1 = 3) is usu-
ally not made. Thus, the evidence for infants’ knowledge of the relation to operands principle is
not as strong or as clear-cut as it could be.

Evaluation of examples assessments have also been used to investigate older learners’ knowledge
of relation to operands (Dixon et al., 2001; Prather & Alibali, 2008a, 2008b). All three of these studies
utilized an equation set rating task to assess participants’ knowledge. Participants were shown sets of
symbolic equations that had been produced by hypothetical students, and were asked to rate each stu-
dent’s attempt at arithmetic. The equation sets were constructed so that all equations were incorrect;
however, half of the sets contained one or more incorrect equations that violated the relation to oper-
ands principle. Participants who have knowledge of the principle should rate sets that contain viola-
tions lower than non-violation sets. Dixon and colleagues (2001) investigated eighth-grade students’
(mean age = 14 years) and adults’ knowledge in a symbolic context with addition, subtraction, division
and multiplication. Prather and Alibali (2008a) expanded on this work to include symbolic equations
that contain negative numbers, the idea being that principle knowledge for arithmetic with positive
numbers may not generalize to arithmetic with negative numbers.

Knowledge of relation to operands based on explicit recognition

Participants’ knowledge can also be evaluated using more explicit knowledge assessments. Dix-
on et al. (2001) gave participants statements about arithmetic operations and asked them to rate
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how likely it was that each statement referred to one of the four basic operations. The statements
rated by the participants pertained to the relation of the operands and the result in arithmetic
equations. For example, participants read the statement ‘‘The answer is always larger than the first
number in the problem”. This is true for addition and multiplication, but not for division or sub-
traction. Thus, participants who have knowledge of relation to operands for all four operations
should respond ‘‘very likely” for addition and multiplication and ‘‘very unlikely” for division and
subtraction.

Comparing assessment types

For the relation to operands family of principles, there is little overlap in the assessment types used
with different age groups of learners. Studies of infants typically use evaluation of examples, with
looking time as the outcome measure. Studies of younger children (18 months–6 years) tend to utilize
application of procedures. Studies of older children are few and far between, but those that have been
done utilize evaluation of examples, with ratings as the outcome measure. Studies of adult partici-
pants also largely use evaluation of examples, with ratings as the outcome measure.

There has been only one within-study contrast of assessment types (Dixon et al., 2001), and
it involved adult participants. In this study, learners displayed knowledge when assessed via
explicit recognition; however, they did not display knowledge when assessed via evaluation of
examples.

Knowledge of relation to operands across contexts

Only one study of relation to operands has compared multiple contexts (Prather & Alibali, 2007). In
this study, adult participants showed more knowledge of relation to operands for subtraction in a ver-
bal context than in a symbolic context. Children (ages 7–8;5 years) did not display knowledge of the
principle in either the verbal or symbolic context.

Cross-study comparisons are difficult because different contexts tend to be used at different ages.
Object contexts tend to be used more often with younger children, and symbolic contexts more often
with older children. Brush (1978) reports that 4–6 year olds use principle-consistent procedures very
consistently (over 90% of trials) in an object context. Sophian and McCorgray (1994) report less opti-
mistic results with similar age groups (4-, 5-, and 6-year-olds) in a verbal context, with better perfor-
mance at age 6 than at age 4. Taken together, these findings suggest that knowledge of relation to
operands may emerge first in object contexts, then in verbal contexts, and lastly in symbolic contexts
(see Table 2a). This provides some empirical support for Resnick’s (1992) theory of general arithmetic
development; however, within-study comparisons are still needed.

When does knowledge of relation to operands emerge?

Though a large number of studies have investigated relation to operands for addition and sub-
traction in infant learners, the conclusions that can be drawn about infants’ knowledge are any-
thing but clear. Based on participants’ evaluation of examples using looking time, Wynn (1992)
concluded that 5-month-old infants’ expectations about adding and subtracting objects were con-
sistent with relation to operands. Several subsequent studies supported this conclusion (Chiang &
Wynn, 2000; Simon et al., 1995). However, other studies have suggested that infants’ behavior is
not driven by arithmetic principle knowledge (Cohen & Marks, 2002; Feigenson et al., 2002; Uller
et al., 1999). As yet, there is no consensus about exactly what sort of knowledge drives infants’
looking behavior.

A study utilizing application of procedures as evidence for knowledge has reported behavior con-
sistent with relation to operands for addition and subtraction in learners as young as 18 months (Star-
key, 1992). The children were shown arithmetic transformations using balls and a container, and their
expectations about the number of objects were inferred by the number of times they reached. Starkey
did not test learners younger than 18 months, so it is unclear whether slightly younger learners would
be successful using this type of method.
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Studies of older learners have tested knowledge of relation to operands across the four basic oper-
ations. These studies indicate that by 14 years, adolescents have knowledge of relation to operands for
addition and multiplication, but not subtraction or division (Dixon et al., 2001). Evidence about adults’
knowledge of relation to operands for subtraction is mixed, with some studies showing positive effects
(Dixon et al., 2001) and others not showing such effects (Prather & Alibali, 2007, 2008a, 2008b). The
general pattern suggests that experience with operations leads to knowledge of the relation to oper-
ands principle.
Directions for future research

The literature on relation to operands favors certain contexts and assessment types, making ques-
tions about the effects of context and assessment type difficult to answer. The majority of studies of
relation to operands principles use evaluation of examples in an object context, due to the very young
ages of the participants in many of the studies. Only one of the studies reviewed used multiple con-
texts (Prather & Alibali, 2007), and only a handful of studies (Dixon et al., 2001; Prather & Alibali, 2007,
2008a, 2008b; Sophian & McCorgray, 1994) used any context other than object. Only one study con-
trasted assessment types (Dixon et al., 2001).

As noted above, there is little overlap in the assessment types used with different age groups of
learners. There is a lively debate about what knowledge underlies infants’ performance on evaluation
of examples tasks. However, it would also be informative to compare, for example, young children’s
performance on application of procedures, evaluation of examples and explicit recognition.
Inversion

The inversion principle is based on the inverse relation between operations. For example, addition
and subtraction are inverse operations, as are multiplication and division. The inversion principle
holds that inverse operations involving the same value result in no net change, a + b � b = a, and a
� b � b = a. Individual studies of the inversion principle and their outcomes are summarized in Tables
3a and 3b.
Evidence of inversion knowledge based on application of procedures

The vast majority of studies of inversion use application of procedures as evidence of knowledge.
Most utilize tasks in which knowledge of the inversion principle can be used as a shortcut. Consider
two types of three-term arithmetic equations: a + b� c = x and a + b� b = x (where x is an unknown).
Learners could solve either equation using a variety of procedures. The second equation can be solved
using a ‘‘shortcut” procedure; the addition and subtraction of b can be ‘‘cancelled out”, leaving a = x.
For many learners (especially younger ones), this procedure can be used relatively quickly and accu-
rately as compared to other procedures such as computation. A few studies utilize self-report to deter-
mine whether participants use the inversion shortcut (e.g., Robinson & Dubé, 2009a, 2009b). However,
in most studies, knowledge of inversion is inferred if learners solve a + b� b = x equations faster and/
or more accurately than a + b � c = x equations (see Table 3c).

Many studies rely on differences in accuracy on inversion and standard equations to determine
whether participants use the shortcut procedure (Brush, 1978; Bryant, Christie, & Rendu, 1999; Gil-
more & Bryant, 2006, 2008; Gilmore & Spelke, 2008; Nunes, Bryant, Hallett, Bell, & Evans, 2009;
Rasmussen, Ho, & Bisanz, 2003; Sherman & Bisanz, 2007). Given the relatively young age of the par-
ticipants in most of these studies, solving a three term equation is not trivial; thus, participants are
motivated to apply any procedure that would decrease the difficulty of these equations. If participants
have knowledge of inversion, they should use the shortcut procedure on the inversion equations,
resulting in more accurate performance.

Other studies have included participants’ reaction times in the analysis (Canobi, 2005; Klein & Bi-
sanz, 2000; Robinson & Ninowski, 2003; Robinson, Ninowski, & Gray, 2006; Siegler & Stern, 1998). The



Table 3a
Studies of inversion using application of procedures.

Study Age group Context Operation DV Success

Sherman and Bisanz (2007) 3 yrs Object Addition/subtraction Accuracy Yes
Baroody, Lai, Li, and Baroody

(2009)
3 yrs Object Addition/subtraction Response pattern 0%

Klein and Bisanz (2000) 4 yrs Object Addition/subtraction Accuracy No
Klein and Bisanz (2000) 4 yrs

(subset)
Object Addition/subtraction Reaction time Yes

Rasmussen et al. (2003) 4 yrs Object Addition/subtraction Accuracy Yes
Canobi and Bethune (2008) 4 yrs Object Addition/subtraction Accuracy 67%a

Baroody and Lai (2007) 4 yrs Object Addition/subtraction Response pattern 6%
Baroody et al. (2009) 4 yrs Object Addition/subtraction Response pattern 13%
Brush (1978), Exp. 2 4 yrs Object Addition/subtraction

a + b � b
% of participants 35%

Brush (1978), Exp. 2 4 yrs Object Addition/subtraction
a � b + b

% of participants 65%

Brush (1978), Exp. 1 4–6 yrs Object Addition/subtraction
a + b � b

Accuracy 54%

Brush (1978), Exp. 1 4–6 yrs Object Addition/subtraction
a � b + b

Accuracy 77%

Gilmore and Spelke (2008) 5 yrs Object Addition/subtraction Accuracy Yes
Gilmore and Spelke (2008) 5 yrs Verbal Addition/subtraction Accuracy Yes
Canobi and Bethune (2008) 5 yrs Object Addition/subtraction Accuracy 76%a

Bryant et al. (1999) 5 yrs Object Addition/subtraction Accuracy Yes
Bryant et al. (1999) 5 yrs Verbal Addition/subtraction Accuracy Yes
Bryant et al. (1999) 5 yrs Symbolic Addition/subtraction Accuracy Yes
Baroody and Lai (2007) 5 yrs Object Addition/subtraction Response pattern 25%
Baroody et al. (2009) 5 yrs Object Addition/subtraction Response pattern 56%
Brush (1978), Exp. 2 5 yrs Object Addition/subtraction

a + b � b
% of participants 70%

Brush (1978), Exp. 2 5 yrs Object Addition/subtraction
a � b + b

% of participants 80%

Bryant et al. (1999) 6 yrs Object Addition/subtraction Accuracy Yes
Bryant et al. (1999) 6 yrs Verbal Addition/subtraction Accuracy Yes
Bryant et al. (1999) 6 yrs Symbolic Addition/subtraction Accuracy Yes
Baroody and Lai (2007) 6 yrs Object Addition/subtraction Response pattern 37%
Baroody et al. (2009) 6 yrs Object Addition/subtraction Response pattern 63%
Brush (1978), Exp. 2 6 yrs Object Addition/subtraction

a + b � b
% of participants 90%

Brush (1978), Exp. 2 6 yrs Object Addition/subtraction
a � b + b

% of participants 90%

Canobi (2005) 5–7yrs Object Addition/subtraction Accuracy Yes
Canobi (2005) 5–7yrs Symbolic Addition/subtraction Accuracy Yes
Canobi (2005) 5–7yrs Object Addition/subtraction Reaction time Yes
Canobi (2005) 5–7yrs Symbolic Addition/subtraction Reaction time Yes
Gilmore and Bryant (2006),

Exp. 2
6–7 yrs Object Addition/subtraction

x + b � b = a
Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

6–7 yrs Object Addition/subtraction
a + x � b = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

6–7 yrs Object Addition/subtraction
a + b � x = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

6–7 yrs Object Addition/subtraction
a + b � b = x

Accuracy Yes

Rasmussen et al. (2003) 6–7 yrs Object Addition/subtraction Accuracy Yes
Baroody et al. (2009) 7 yrs Object Addition/subtraction Response pattern 100%
Siegler and Stern (1998) 8 yrs Symbolic Addition/subtraction Verbal report—% of

participants
21%b

Nunes et al. (2009) 8 yrs Symbolic Addition/subtraction Accuracy Yes
Gilmore and Bryant (2008) 8 yrs Symbolic Addition/subtraction

x + b � b = a
Accuracy Yes

(continued on next page)
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Table 3a (continued)

Study Age group Context Operation DV Success

Gilmore and Bryant (2008) 8 yrs Symbolic Addition/subtraction
a + b � b = x

Accuracy Yes

Gilmore and Bryant (2008) 8 yrs Symbolic Addition/subtraction
b � b + x = a

Accuracy Yes

Gilmore and Bryant (2008) 8 yrs Symbolic Addition/subtraction
b � b + a = x

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

8–9 yrs Object Addition/subtraction
x + b � b = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

8–9 yrs Object Addition/subtraction
a + x � b = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

8–9 yrs Object Addition/subtraction
a + b � x = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 2

8–9 yrs Object Addition/subtraction
a + b � b = x

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 1

8–9 yrs Object Addition/subtraction
a + b � b = x

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 1

8–9 yrs Object Addition/subtraction
x + b � b = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 1

8–9 yrs Verbal Addition/subtraction
a + b � b = x

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 1

8–9 yrs Verbal Addition/subtraction
x + b � b = a

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 1

8–9 yrs Symbolic Addition/subtraction
a + b � b = x

Accuracy Yes

Gilmore and Bryant (2006),
Exp. 1

8–9 yrs Symbolic Addition/subtraction
x + b � b = a

Accuracy Yes

Gilmore (2006) 9 yrs Verbal Addition/subtraction Accuracy Yes
Gilmore (2006) 9 yrs Symbolic Addition/subtraction Accuracy Yes
Robinson et al. (2006) 11 yrs Symbolic Addition/subtraction Accuracy Yes
Robinson et al. (2006) 11 yrs Symbolic Addition/subtraction Reaction time Yes
Robinson et al. (2006) 11 yrs Symbolic Addition/subtraction Verbal report—% of trials 44%
Robinson et al. (2006) 11 yrs Symbolic Multiplication/division Accuracy Yes
Robinson et al. (2006) 11 yrs Symbolic Multiplication/division Reaction time Yes
Robinson et al. (2006) 11 yrs Symbolic Multiplication/division Verbal report—% of trials 19%
Robinson and Dubé (2009a) 6th grade Symbolic Multiplication/division Verbal report—% of trials 18%
Robinson and Dubé (2009a) 7th grade Symbolic Multiplication/division Verbal report—% of trials 14%
Robinson and Dubé (2009a) 8th grade Symbolic Multiplication/division Verbal report—% of trials 17%
Robinson et al. (2006) 13 yrs Symbolic Addition/subtraction Accuracy Yes
Robinson et al. (2006) 13 yrs Symbolic Addition/subtraction Reaction time Yes
Robinson et al. (2006) 13 yrs Symbolic Addition/subtraction Verbal report—% of trials 60%
Robinson et al. (2006) 13 yrs Symbolic Multiplication/division Accuracy Yes
Robinson et al. (2006) 13 yrs Symbolic Multiplication/division Reaction time Yes
Robinson et al. (2006) 13 yrs Symbolic Multiplication/division Verbal report—% of trials 39%
Robinson and Ninowski

(2003)
Adult Symbolic Addition/subtraction Reaction time Yes

Robinson and Ninowski
(2003)

Adult Symbolic Multiplication/division Reaction time Yes

a Averaged across abstract, large, and small.
b The value reported is the proportion of participants who used the shortcut procedure on at least one trial at the outset

(session 1) of a multi-session study. These participants were excluded from the remainder of the study.

Table 3b
Studies of inversion using evaluation of examples.

Study Age group Context Operation DV Success

Vilette (2002) 2 yrs Object Addition/subtraction Error rate No
Vilette (2002) 3 yrs Object Addition/subtraction Error rate No
Vilette (2002) 4 yrs Object Addition/subtraction Error rate Yes
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Table 3c
Studies of inversion using evaluation of procedures.

Study Age group Context Operation DV Success

Robinson and Dubé (2009a) 6th grade Symbolic Multiplication/division Approval of shortcut 83%
Robinson and Dubé (2009a) 7th grade Symbolic Multiplication/division Approval of shortcut 73%
Robinson and Dubé (2009a) 8th grade Symbolic Multiplication/division Approval of shortcut 93%

Each row corresponds to one reported result within a study. DV is the dependent variable as reported by the author. Outcome
success is determined by a significant result involving the dependent variable that implies principle knowledge.
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idea is that learners who use the inversion shortcut should have faster reaction times on inversion
equations as compared to standard equations, for which computation is required.
Inversion knowledge based on evaluation of procedures

In addition to measuring what procedures learners themselves use, it is also possible to have them
evaluate procedures used by others. Robinson and Dubé (2009a) presented different types of proce-
dures for solving three-term division and multiplication problems, and asked participants whether
they approved of each procedure. Positive evaluations of the shortcut procedure were interpreted
as evidence for knowledge of the inversion principle.
Inversion knowledge based on evaluation of examples

A less common method of evaluating inversion knowledge is evaluation of examples. In one study
(Vilette, 2002), 2-, 3-, and 4-year-old children were shown three types of equations, 2 + 1, 3 � 1, and
2 + 1 � 1 using a variation of the Mickey Mouse procedure (Wynn, 1992). Each equation was displayed
either with the correct answer or with an incorrect answer. Children were asked to evaluate the an-
swer by responding to the question, ‘‘Is that normal?”. Children were not required to perform calcu-
lations to successfully answer the question. Knowledge of the inversion principle should allow
children to perform accurately at evaluating the 2 + 1 � 1 equations.
Comparing assessment types

There is little variation in the assessment types used in investigations of inversion knowledge. All
but two of the studies reviewed used application of procedures as evidence for knowledge of
inversion.

Both application of procedures and evaluation of examples have been used in research with 4-year-
olds, allowing some comparison across assessment types in this age group. Using evaluation of exam-
ples in an object context, Villete (2002) found that the vast majority of 4-year-olds (20 of 22) correctly
stated both that 2 + 1 � 1 = 2 was ‘‘normal” and that 2 + 1 � 1 = 3 was not. Two other studies used
application of procedures as evidence with participants in the same age range (Klein & Bisanz,
2000; Rasmussen et al., 2003). The results of these studies were somewhat mixed. Rasmussen et al.
(2003) reported that 4-year-olds performed significantly better on inversion equations than standard
equations in an object context. Klein and Bisanz (2000) found that overall, 4-year-olds showed no dif-
ference in accuracy (41% and 49%) or response time on standard and inversion equations. However, for
the subset of participants who had sufficient data to analyze (i.e., participants who did not use overt
calculation on at least two problems of each type), participants solved inversion equations faster than
standard equations, suggesting use of the shortcut procedure on inversion problems. Taken together,
these studies suggest that 4-year-olds may have emerging knowledge of inversion. Further, this
knowledge may be more readily displayed using evaluation of examples than application of
procedures.
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Comparing multiple contexts

A few studies have directly compared learners’ knowledge of inversion across object, verbal and
symbolic contexts (Bryant et al., 1999; Canobi, 2005; Gilmore, 2006; Gilmore & Bryant, 2006; Gilmore
& Spelke, 2008). None of these studies report any differences in learners’ inversion knowledge in the
tested contexts. However, it should be noted that learners in these studies were older than the age at
which inversion is suggested to first emerge (around 3–4 years; see below). Thus, it seems that these
learners may have reached a point where their knowledge is similar across contexts. Of the remaining
studies, there are no available comparisons that address whether learners at earlier points in develop-
ment can generalize their knowledge of inversion across contexts, or whether knowledge of the prin-
ciple emerges in one context before others.

Gilmore and Panadatou-Pastou (2009) conducted a meta-analytic review of studies of the inversion
effect (i.e., the size of the advantage for inversion problems over control problems). They found that
age did not moderate the size of the effect, but context did so. The inversion effect was greatest for
pictorial presentation of the items, moderate for verbal and concrete presentation, and smallest for
symbolic presentation. This pattern is in line with the context effects predicted by Resnick’s model;
however it does not directly address whether knowledge of inversion emerges in one context before
others.
When does knowledge of inversion emerge?

The earliest evidence of knowledge of the inversion principle is in 3-year-olds in an object context
(Sherman & Bisanz, 2007). In this study, preschool children (3;0 to 3;11 years) performed more accu-
rately on inversion equations than on standard equations. At an individual level, 83% of the partici-
pants were more accurate on the inversion items than on the standard items. Thus, this study
suggests that knowledge of inversion with addition and subtraction begins to emerge by around 3
years. However, other studies in which knowledge is assessed at an individual level have suggested
that very few preschoolers demonstrate understanding of inversion (e.g., only 1 of 16 four-year-olds
in the study by Baroody and Lai (2007); see Bisanz et al. (2009), for discussion of this issue). Differ-
ences across studies may hinge on the particular assessment items used, or on the stringency of the
criteria for demonstrating understanding.

Evidence about inversion with multiplication and division is fairly sparse. The youngest partici-
pants who have been tested with multiplication and division are 11-year-olds, and children of this
age do demonstrate knowledge of the principle, both in application of procedures assessments (Rob-
inson et al., 2006) and evaluation of procedures (Robinson & Dubé, 2009a).
Directions for future research

The inversion literature utilizes almost exclusively application of procedures as evidence for
knowledge of the principle. Only one study to date has used evaluation of procedures, and one has
used evaluation of examples. No studies have utilized justification of procedures or explicit recogni-
tion. Since the vast majority of studies take the same approach to evaluating knowledge, this literature
may present an incomplete characterization of learners’ knowledge. It is unclear whether learners
who show knowledge in application of procedure studies would do better, worse, or equally well
on a different type of knowledge assessment.

In terms of context, there is some variation, including at least three within-study comparisons (Bry-
ant et al., 1999; Gilmore, 2006; Gilmore & Bryant, 2006). The remaining studies are split between ob-
ject context and symbolic context. The studies that utilize an object context typically include much
younger participants than those that utilize a symbolic context. This makes comparing results in re-
gards to possible effects of context difficult. Given that the earliest evidence for inversion knowledge
is from 3-year-olds, learners of this age would be ideal for investigating of the effects of assessment
type and context on knowledge.



R.W. Prather, M.W. Alibali / Developmental Review 29 (2009) 221–248 241
Remaining issues

The studies reviewed in this paper do not follow any one specific standard for assessing knowledge.
While most studies present well thought out methodologies, they vary in terms of knowledge assess-
ment type and the context in which arithmetic is presented. Though this may be sufficient to draw
conclusions in individual studies, it makes progress difficult for the field at large, because findings
across studies are often not directly comparable. Without a clear view of the relations between differ-
ent types of knowledge assessments and contexts, it is difficult to paint a comprehensive picture of the
acquisition of principle knowledge.

This review has shown that assessment type and context both affect performance on tasks de-
signed to assess principle knowledge, so they must be taken into account in any complete account
of the acquisition of principle knowledge. It is certainly not realistic to expect every study to simulta-
neously take on all these issues. However, it seems that the effects of knowledge assessment type and
context have largely been ignored in the arithmetic principle literature.

The evidence reviewed herein indicates that the type of assessment used can influence whether
principle understanding is displayed. In general, tasks that involve evaluation of examples tend to re-
veal greater understanding than tasks that involve application of procedures. Further, among tasks
that involve application of procedures, tasks constructed specifically to diagnose principle knowledge
tend to reveal greater understanding than tasks typical of the domain. Thus, conclusions about what
learners of various ages ‘‘know” hinge in part on the knowledge assessments used. Few studies utilize
more than one measure of principle knowledge, and there are very few within-study comparisons of
different assessment types.

The evidence reviewed herein also indicates that context can affect principle understanding and
whether it is displayed. Some evaluations of context effects require integrating findings across studies
(e.g., effects of context on commutativity knowledge in 6-year-olds, reviewed above). Unfortunately,
such comparisons are often problematic because of differences in methods, criteria for success, and
statistical summaries used across studies. There are a handful of within-study comparisons of differ-
ent contexts. Some of these within-study comparisons show null effects (e.g., Canobi et al., 2003); this
may occur because the participants are old enough to have mastered the principle in all contexts.
Other within-study comparisons show significant effects of context (e.g., Cowan & Renton, 1996). Re-
snick’s (1992) theory holds that arithmetic understanding should emerge first in an object context,
then in a verbal context, then in a symbolic context, and finally in an abstract context. Existing data
on the acquisition of principle knowledge across contexts are generally in line with this theory. How-
ever, because few studies have been designed to directly assess the effects of context on principle
understanding, this is an important arena for future work.
The place of multifaceted knowledge assessments

One possible approach to addressing these issues is the use of multifaceted knowledge assess-
ments, or knowledge profiles, which summarize individual participants’ performance across multiple
knowledge assessments (see Bisanz et al., 2009, for discussion). Knowledge profiles provide a more
comprehensive picture of learners’ knowledge and how it changes than can be obtained from a mix
of single-faceted knowledge assessments drawn from different studies. Such profiles are valuable be-
cause principle knowledge is not something that learners either ‘‘have” or ‘‘don’t have”. Instead, learn-
ers’ knowledge of arithmetic principles appears to be graded, in the sense that it is displayed in some
contexts and through some types of knowledge assessments but not others. The value of knowledge
profiles is underscored by evidence that knowledge is graded in domains other than arithmetic (e.g.,
Munakata & Yerys, 2001; Zelazo, Frye, & Rapus, 1996). For example, explicit assessments of learners’
rule learning in a card-sorting task yield very different results than application-of-procedures assess-
ments of that same rule.

Multi-faceted knowledge assessments are more common—though by no means common—in the
literature on arithmetic problem solving, as compared to the literature on principle knowledge. As
one example, Jordan et al. (1992) tested calculation abilities in middle and low-income children in
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problem solving in both an object context and in three different verbal contexts. They found that mid-
dle-income children outperformed low-income children in all of the verbal contexts, but that the two
groups performed similarly in the object context. By comparing multi-faceted knowledge assessments
across two different groups of learners, these investigators gained traction on the issue of how envi-
ronmental input contributes to the development of calculation abilities.

It is possible that very different conclusions would be drawn about the acquisition of principle
knowledge if multi-faceted assessments were the norm. For example, for relation to operands, differ-
ent types of single-faceted knowledge assessments tend to be used at different ages, making it impos-
sible to draw firm conclusions about when knowledge of the principle emerges. Very different
conclusions are warranted if one considers only evaluation of examples or only application of proce-
dures (as early as 1 year vs. as late as 7 years). If both types of assessments were used with the same
participants, one might be less likely to conclude that younger children ‘‘have” knowledge of the prin-
ciple, even if they ‘‘pass” the evaluation of examples tasks.

In the literature on arithmetic principles, there are a few notable exceptions to the preponderance
of single-faceted assessments. One is Canobi’s (2005) use of knowledge profiles in investigating
knowledge of commutativity and inversion as well as other principles relevant to addition and sub-
traction. Canobi evaluated participants’ principle knowledge using different knowledge assessments
(application of procedures and evaluation of procedures) and in different contexts (object and sym-
bolic), and she also examined participants’ performance on other measures of arithmetic performance.
This allowed for conclusions that go beyond ‘‘what 8-year-olds know” to begin to address the nature of
principle knowledge and its relation to arithmetic knowledge in general. The findings revealed impor-
tant individual differences in how children responded to concrete materials, with one subset of the
children recognizing concepts with reference to objects, and another subset doing so with objects ab-
sent. These individual differences in patterns of knowledge could only be revealed with a multi-faceted
knowledge assessment.

A second study that utilizes a multifaceted knowledge assessment is Robinson and Dubé’s (2009a)
study of inversion with multiplication and division. In this study, data from two types of knowledge
assessments allowed for a more nuanced view of participants’ knowledge. A subset of the participants
did not themselves use a procedure that suggested knowledge of the principle, but were able to note
that the procedure was appropriate and explain why it could be used. This response pattern would not
have been revealed if only one type of knowledge assessment had been used.

Thus, we endorse knowledge profiles as a means to gain leverage on variations in performance
across contexts and knowledge assessment types. However, we are left with an outstanding issue:
what do variations in performance tell us about the nature of learners’ knowledge? The fact that learn-
ers’ knowledge of principles varies as a function of context and type of assessment seems to imply that
principle knowledge is not general or abstract. However, it also seems inaccurate to argue that prin-
ciple knowledge is exemplar-based. We suggest that principle knowledge may initially be represented
at an intermediate level of abstraction. Such knowledge is sufficiently abstract to generalize across
problems within a given context, but not so abstract that it is generalized immediately across contexts.
For example, a learner may have abstract, generalizable knowledge of arithmetic principles within an
object context, but this knowledge may not generalize to a symbolic context, leading to different
behavior on assessments that involve problems presented in a symbolic context.

It is worth noting that the principle knowledge used in a symbolic context is not necessarily more
abstract than that used in a verbal or object context. Learners could show knowledge in a symbolic
context, but fail to show it in other contexts (Lawler, 1981). However, given the studies reviewed in
this paper, and in line with the theoretical accounts offered by Piaget, Resnick (1992) and others,
we expect that in most cases, learners who use principle knowledge in a symbolic context will display
that knowledge in verbal and concrete contexts as well. If there are learners for whom this is not the
case, it would suggest that there may be multiple possible developmental trajectories in the
acquisition of principle knowledge across contexts. Such a finding would compel further theoretical
work on mechanisms of change in principle knowledge, because any proposed mechanisms would
need to explain the full range of observed developmental trajectories.

We hypothesize that, at least initially, principle knowledge may be tied to the contexts in which it
is learned. For example, if a learner has detected regularities about adding and subtracting objects,
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that learner may not immediately transfer this knowledge to adding and subtracting numbers—the
relevant principles may need to be relearned in the symbolic context. Future research will need to ad-
dress this possibility. Future studies could also examine whether there are ‘‘savings” in learning a prin-
ciple in a new context, if that principle is already understood in another context.

We further suggest that principle knowledge may be represented more or less strongly, perhaps as
a function of the amount of experience a learner has with the regularity in question. Different types of
knowledge assessments may have different requirements regarding the strength of knowledge needed
for success (see, e.g., Munakata, McClelland, Johnson, & Siegler, 1997). For example, a learner may have
an internal representation of the principle that is sufficiently strong to support accurate performance
on a recognition task, but that is too weak to support performance on an application-of-procedures
task. Applying a procedure based on the knowledge may require a stronger internal representation be-
cause the response is more complex.

More broadly, what is needed to ‘‘show” knowledge on any particular assessment is never simply
the knowledge in and of itself. Other factors come into play, such as memory limitations, task inter-
pretations and the availability of competing procedures. It seems that knowledge assessments with
fewer requirements might be more ‘‘pure” assessments than assessments with many requirements.
However, there are important differences between having knowledge and using that knowledge.
Knowledge assessments that also make other demands, such as demands on short-term memory,
may be more accurate in predicting the practical use of that knowledge.

Issues in treatment of data

Integrating across studies is also difficult because different types of statistical summaries are used,
even across studies that utilize the same assessment type. Many studies report the percentage of trials
on which participants’ behavior matches some predetermined criterion. Other studies report the per-
centage of participants who behave a certain way all the time, most of the time, or even only once.
Thus, not only the type of knowledge assessment, but also the treatment of data can vary across stud-
ies, making it difficult to integrate findings. Examples from studies that do report multiple statistical
summaries illustrate this point. In once such case (Canobi et al., 2002) the percentage of participants
who used a procedure (96%) was very different from the percentage of trials on which it was used
(53%).

Statistical summaries that aggregate across participants have the potential to detect small changes
in overall behavior. If each participant’s behavior changes only slightly, an overall effect may be de-
tected only when aggregating across many participants. However, conclusions about the behavior
of participants as a group may not accurately reflect each individual’s performance. A subset of par-
ticipants may drive the effect, leading to an overestimation of participants’ overall knowledge (see
Baroody & Lai, 2007, for discussion of this point). For example, in one study of 8-year-olds’ under-
standing of inversion, group level analyses revealed that children performed better on inversion prob-
lems than on control problems, implying knowledge of inversion in this age group. However, at the
individual level, fully 35% of the participants did not show this pattern (Nunes et al., 2009).

Broadly speaking, the appropriateness of any particular statistical summary depends on the nature
of the specific research question being addressed. If the aim is to understand patterns of normative
development, group level analyses may be most appropriate, but if the aim is to understand processes
of change, individual level analyses will be required.

Mechanisms of change in the development of arithmetic principle knowledge

A key question in developmental research is, what do learners at various points in development
know? As illustrated in this review, a good deal of arithmetic principle research has addressed this
question. An equally important question is, what mechanisms underlie learners’ progression? In the
case of arithmetic principles, the answer to this question is much less clear.

A small but growing number of studies have sought to explicitly address mechanisms of change in
principle knowledge. These include three studies of inversion (Lai, Baroody, & Johnson, 2008; Robin-
son & Dubé, 2009b; Siegler & Stern, 1998), one of commutativity (Canobi, 2009), one of relation to
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operands (Prather & Alibali, 2008b), and one of the arithmetic principle direction of effect (Dixon &
Bangert, 2005). All of these studies investigate changes in learners’ knowledge as a function of expe-
rience with arithmetic operations (either in a symbolic context or with objects). In each case, partic-
ular sorts of experiences are hypothesized to lead to gains in principle knowledge.

Four of these studies have suggested that the density of relevant experiences may influence potential
learning. When relevant experiences are presented closely together rather than distributed over time,
participants show greater learning of the target principle (Dixon & Bangert, 2005; Robinson & Dubé,
2009; Prather & Alibali, 2008b; Siegler & Stern, 1998). For example, Siegler and Stern (1998) showed
that participants began to apply the inversion principle more quickly when they encountered many
inversion problems blocked together than when they encountered inversion problems interspersed
with control problems (e.g., a + b � c = ?).

Another training study has shown that variations in problem sequencing can influence principle
learning. Canobi (2009) provided some children with a set of practice arithmetic problems that in-
cluded commuted pairs presented in sequence (e.g., 3 + 6 was followed by 6 + 3); other children re-
ceived the same set of practice problems, presented in a random sequence. At posttest, children
who received the conceptually sequenced practice problems were more likely than children who re-
ceived randomly sequenced problems to generate accurate commutativity explanations in a puppet
judgment task. Thus, highlighting conceptual relations through appropriate problem sequencing led
some children to ‘‘discover” or to make more explicit their understanding of commutativity.

One study has suggested that principle-relevant actions may promote principle understanding. In a
training study, Lai et al. (2008) showed some children addition or subtraction operations on collec-
tions of objects, and asked the children to ‘‘repair” those collections to their initial state. Thus, children
needed to perform operations that inverted the operations that they had just viewed. The majority of
participants who were unsuccessful at pretest and who received this action-based training showed
progress in their understanding of inversion at posttest (71%, compared to 21% in a control condition).

Finally, one study has suggested that exposure to principle violations may also promote principle
learning (Prather & Alibali, 2008b). In this study, participants who were exposed to a mixture of prin-
ciple-consistent equations and equations that violated the principle showed greater gains in principle
understanding than participants who were exposed solely to principle-consistent examples.

The types of experiences investigated in these studies may be effective because they help learners
improve their encoding of arithmetic equations (Prather & Alibali, 2008b). It seems that both solving
conceptually sequenced practice problems and contrasting principle-consistent examples and viola-
tions may serve to highlight key features of the problems, and consequently lead to more accurate
encoding of those features. Future work is needed to test the role of problem encoding as a possible
mechanism in acquiring principle understanding.

These studies have begun to address the mechanisms of arithmetic principle learning; however, the
overall picture is still very much unclear. A more complete understanding of how learners acquire
principle knowledge will require further research on mechanisms of learning, as well as research that
provides ‘‘snap shots” of knowledge at various ages. Future work on mechanisms of knowledge change
should also bear in mind the potential implications of knowledge assessment types and context for
learners’ performance.

Implications for cognitive development more broadly

The issues addressed in this review are not unique to the development of arithmetic principle
knowledge, or even to the domain of mathematics. Researchers across areas of cognitive development
must grapple with the implications of variations in children’s performance across knowledge assess-
ments and contexts. These variations make describing knowledge more difficult for the researcher;
however, the use of multifaceted knowledge assessments yields more accurate characterizations of
learners’ knowledge and behavior, and ultimately may lead to more productive theorizing about
mechanisms of developmental change.

Some illustrative examples can be drawn from research on the development of theory of mind. Cle-
ments and Perner (1994) utilized two measures of false belief knowledge—verbal prediction and direc-
tion of eye gaze—drawn from the same task. They presented children with a standard false belief task,
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in which a story character hid an object in one location and then went away. While the character was
gone, the object was moved to another location. The experimenter then announced that the character
was about to return, and said, ‘‘I wonder where he’s going to look”. Three-year-old children often
looked to the correct location, but verbally reported the incorrect location. Thus, children’s eye gaze re-
vealed more knowledge than their verbal reports. Based on these findings, Clements and Perner ar-
gued that children acquire an implicit understanding of false belief before they acquire an explicit,
verbally stateable understanding. This perspective sets constraints on possible mechanisms of change
in the development of theory of mind, because any proposed mechanism must yield implicit knowl-
edge before explicit knowledge.

Building on this work, Ruffman, Garnham, Import, and Connolly (2001) classified children in terms
of their performance on both looking and verbal measures—a ‘‘knowledge profile” of sorts. They then
went on to examine the performance of groups of children with different knowledge profiles on a
‘‘betting” task, in which children could bet plastic counters on locations where they thought the story
character would go. The betting task was intended as a measure of the certainty of their responses. The
data revealed that, among younger children, those who ‘‘passed” the eye gaze measure but failed the
verbal report were more certain of (i.e., bet more on) the incorrect solution than those who ‘‘passed”
the eye gaze measure and ‘‘passed” the verbal report. Thus, children who performed similarly on one
measure (eye gaze) but differently on another measure (verbal response) showed different patterns of
behavior on another task. Thus, multi-faceted assessment of children’s knowledge yielded information
that helped predict their behavior on another task.

Other research on the development of theory of mind has sought to develop a knowledge profile mea-
sure that can be used to evaluate individual children’s acquisition of theory of mind. Wellman and Liu
(2004) tested preschool children on a wide range of theory of mind tasks, and they identified a set of se-
ven tasks that children pass in a predictable sequence. Children who passed tasks later in the sequence
tended to pass all of the earlier tasks as well. This scale has been widely used to evaluate the development
of theory of mind in various subgroups of children, including children growing up in different cultures
(e.g., Kristen, Thoermer, Hofer, Aschersleben, & Sodian, 2006; Wellman, Fang, Liu, Zhu, & Liu, 2006), deaf
children (Peterson, Wellman, & Liu, 2005), and children with autism (Peterson et al., 2005).

In the future, it may be possible to generate a comparable sort of scale for children’s acquisition of arith-
metic principles. It seems unlikely that all or most children will acquire arithmetic principles in a constant
order. However, such a tool would allow investigations of how different factors, such as curricula, math-
ematical ability, and spatial ability affect children’s acquisition of arithmetic principle knowledge.
Conclusion

This paper has reviewed research on learners’ knowledge of the commutativity, relation to oper-
ands, and inversion principles in the domain of arithmetic. For all three principles, conclusions about
learners’ principle knowledge hinge both on the context in which the arithmetic is presented, and on
the type of knowledge assessment used to evaluate learners’ knowledge. However, relatively few stud-
ies directly address the possible effects of either of these factors. Systematic attention to these issues
will encourage progress in understanding both the emergence of principle knowledge and possible
mechanisms of change in that knowledge.

For all three principles, the vast majority of existing studies utilize single-faceted knowledge
assessments, which can lead to incomplete or misleading views of learners’ knowledge. In this paper,
we have made a case for the importance of multifaceted knowledge assessments, or knowledge pro-
files, that characterize learners’ knowledge across tasks, contexts, and assessment types. Such profiles
require research designs that include multiple measures of principle knowledge for individual learn-
ers, and as such, they pose various challenges, both practical and statistical. Despite these challenges,
we believe that research that utilizes multifaceted knowledge assessments is needed to spur both the-
oretical and empirical progress in understanding the development of principle understanding, not
only in arithmetic but also in other domains. The potential payoff from such work should make
addressing the challenges worthwhile.
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